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Abstract. Using a Hilbert space formalism we present axiomatic models of both a current-
fed thick superconducting ring and a dc SQUID (superconducting quantum interference device)
as quantum systems possessing superselection rules. A method ofquantization by partsis
introduced to establish a quantum theory of a system having a circuit configuration. This
involves separate quantization of parts of a circuit: the whole system is then recovered by
adding these separately quantized parts together. Our models make clear the difference between
standard quantum interference and the interference effects exhibited by SQUIDs. They lead us
to question a commonly accepted definition of a classical system, and also clarify the properties
required of measuring apparatus in the quantum and classical realms.

1. Introduction

Superselection rules (SSRs), and the associated concept of macrorealism, provide a well
established means of describing classical properties within a quantum formalism [1, 2].
To date, they have been most extensively employed in quantum measurement theory [3–
5], but they might be expected to be a general feature of all quasiquantum systems (those
exhibiting both quantum and classical aspects). To support this contention, specific examples
of systems which can be axiomatically modelled using a quantum mechanics plus SSR
formalism are needed. Chiral molecules are widely regarded as one such example [6–8]. In
a recent paper, we presented two models of quantum systems possessing SSRs; namely
a thick superconducting ring (hereafter abbreviated to TSCR) and a TSCR containing
a single Josephson junction (JJ) [9]. In addition to providing an application for SSRs
outside quantum measurement theory, these models help shed some light on the non-
observable nature of the generator of a unitary time evolution describing transitions between
supersectors [1, 3, 5].

In this paper, we use similar methods to develop an axiomatic model of the
phenomenology of a current-fed TSCR, and then a model of a TSCR containing two JJs in
a dc SQUID (superconducting quantum interference device) configuration, in which the JJs
are parallel with respect to the fed current passing through the ring. In the presence of an
externally applied magnetic flux8ex, the maximum through supercurrent that the system
can sustain displays an interference pattern as a function of8ex, with a period equal to
the flux quantum80 = h/2e. This extreme sensitivity to the external magnetic flux makes
the use of SQUIDs ideal in the construction of high-resolution magnetometers and related
measuring apparatus [10, 11]. Our models provide further examples of physical systems
exhibiting SSRs but are also of interest in their own right. They clarify the difference
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between standard quantum interference patterns and the interference effects exhibited by
these systems. They also suggest that a commonly accepted definition of a classical system
[12] needs amending, and help us to distinguish the essential features of apparatus used to
measure quantum, and classical, systems.

There is a very well respected microscopic theory of superconductivity: the BCS theory
[13], but a large number of superconducting phenomena may be modelled successfully
using the macroscopic wavefunction approach [14, 15]. According to BCS theory,
superconductivity becomes possible because at low temperatures the electrons form pairs,
known as Cooper pairs, which behave as bosons and thus can all occupy the ground-state
energy level, forming a Bose–Einstein condensate. It is the flow of this condensate as a
whole that gives rise to a supercurrent. The macroscopic wavefunction hypothesis assumes
that the whole condensate may be treated as a single pseudoparticle of massm = 2me and
chargeq = 2e twice those of an electron. This pseudoparticle can then be described by
a one-particle wavefunction. We shall adopt the macroscopic wavefunction approach in
this paper and shall use the method of quantization of classical particle models to construct
our quantum mechanical models. Since we shall be considering a circuit configuration, a
method ofquantization by partsis introduced. This involves separate quantization of the
parts of a circuit: the whole system is then recovered by adding these separately quantized
parts together.

2. A TSCR subject to an applied current

The first system that we wish to study is a uniform TSCR under standard conditions [9],
subject to a current flowing in at the top (θ = 0), passing in parallel through the left- and
right-hand sides of the ring and recombining in the output lead situated atθ = θ0, where
θ is taken in an anticlockwise direction (figure 1). The left-hand segment thus subtends an
angleθ0 and the right-hand segment subtends an angle (2π − θ0). For a uniform ring of
total self-inductanceL, the self-inductances of these segments are respectivelyLl andLr:

Ll = θ0

2π
L Lr = 2π − θ0

2π
L. (1)

In a resistanceless parallel circuit in which the mutual inductance between the paths
is negligible the current in each path is inversely proportional to the self-inductances of

Figure 1. TSCR subject to an applied current.
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the two paths [16 p 13]. A supercurrentI fed into the TSCR will split into left and right
currentsIl andIr:

Il = (2π − θ0)

2π
I Ir = θ0

2π
I. (2)

The currentsIl and Ir each produce a flux of magnitude8I within the ring in opposing
directions, so that the net flux enclosed in the ring is zero. The magnitude of8I is
determined byI andθ0:

8I = LlIl = LrIr = (2π − θ0)θ0

(2π)2
LI. (3)

The superconductivity of a material is destroyed by currents (or, equally, external fields)
above some critical valueJc (or Bc) [16]. This means that for certain values ofI ,
equation (2) places upper and lower limits onθ0, since both the left and right currents
must remain below the critical currentJc in order to maintain superconductivity. As the
output lead gets closer to the input one (i.e. as eitherθ0→ 0 or θ0→ 2π ), the splitting of
the currents between the left- and right-paths will become increasingly unequal so that most
of the applied currentI will flow through one path. In the limiting case superconductivity
will be destroyed for values of the applied current exceeding the critical current, whereas
if the input and output leads are opposite each other (so thatIr = Il = I/2) the applied
current can be twice the critical current before superconductivity is destroyed.

2.1. Modelling the system in the absence of magnetic fields

In our previous paper [9], we developed quantum models by considering a single classical
particle of massm = 2me and chargeq = 2e twice those of an electron, constrained to move
around a circleS of radiusa, and then quantizing this classical model. In the present case,
if we were to start with a classical model we would have a particle movingthrough the ring:
being classical it would have to take either one or other of the two paths. This is typical of
an electrical circuit. There have been some systematic investigations into quantum systems
constrained in both similar, and more complex, circuits in which intricate mathematical
analysis has to be used [17, 18]. Fortunately the system that we are considering here turns
out to be mathematically less complex, and exactly solvable.

We start with a classical system consisting of a single particle moving through the ring,
taking either one or other of the two paths. Each of these paths will be treated separately
with its own position variable and associated canonical momentum. We take the ring to be
lying in thex–y plane centred at the origin, and shall treat the system as one-dimensional. In
cylindrical coordinates, the position variable for the left (or right) path isaθ (or a(2π − θ))
and the momentumpl (or pr). The Hamiltonian (energy) of the system is taken to be
the weighted average of the energies of the two possible classical paths, with the relative
weights determined by the path length ratioθ0 : (2π − θ0). That is, we have

H = 1

2m

[
θ0

2π
p2

l +
(

2π − θ0

2π

)
p2

r

]
. (4)

We are now in a position to implement a quantization process. We first quantize the
motion on the left- and right-hand sides in separate Hilbert spacesHl andHr, with separate
left and right observables. We then associate the direct sum Hilbert spaceH = Hl ⊕Hr,
and the direct sums of the separately quantized operators, with the entire system [9, 17, 18].
This will lead us to introduce further operators representing observables of the whole ring,
such as through and circulating momenta. That we have chosen to represent the entire
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system by a direct sum rather than a tensor product [19] is a reflection of the fact that we
are dealing with a single system, not two coupled systems. Note that no SSRs are implied
by the direct sums here.

2.1.1. Quantization of the two sides.To quantize the left-hand side, we take the Hilbert
spaceHl to be the spaceL2(Sl) of square-integrable functions on the left-hand segment of
the ringSl = {θ ∈ [0, θ0]} with respect to the measurea dθ . Let AC(Sl) denote the set of
absolutely continuous functionsφl(θ) on Sl and letϕl denote a real number in the interval
(−π, π ]. Then the operator̂pϕl = −(ih̄/a)(d/dθ) will be self-adjoint [20] on the domain

Dϕl = {φ l : φ l ∈ AC(Sl);φ l(0+) = eiϕlφ l(θ0−); p̂ϕlφ
l ∈ L2(Sl)}. (5)

We make the assumption that the canonical momentum is quantized as the operatorp̂ϕl .
The phase parameterϕl is determined byθ0 andI , as will be seen later. As in our earlier
models [9], we can define a left-hand current operatorĴϕl representing the supercurrent in
the left-hand path:

Ĵϕl =
e

πam
p̂ϕl . (6)

We can also introduce agenerated fluxoperator8̂ϕl representing the flux generated in the
ring by the currentĴϕl flowing in the left-hand side of the ring:

8̂ϕl = Ll Ĵϕl =
θ0L

2π

e

πam
p̂ϕl =

θ0

2π

πa

e
p̂ϕl (7)

whereL is taken to beL = m(πa/e)2, as in our previous paper [9]. These operators share
a common set of eigenfunctions

ψ l
ϕl ,kl
(θ) = 1√

2πa
exp i

[
2πkl − ϕl

θ0

]
θ kl = 0,±1,±2, . . . . (8)

These eigenfunctions are not normalized: the factor 1/
√

2πa has been chosen so as to
ensure that the condensate density will be uniform and normalized round the entire ring
[21]. Respective eigenvalues are:

pϕl ,kl =
h̄

aθ0
(2πkl − ϕl) jϕl ,kl =

80

Lθ0
(2πkl − ϕl) 8ϕl ,kl =

80

2π
(2πkl − ϕl). (9)

We need to determine the value of the phase parameterϕl . We have already defined
the left (and right) generated flux8I in terms of the external parametersI , L and θ0

(equation (3)). By equating8I with the eigenvalues of the left generated flux operator8̂ϕl

(equation (9)), we can writeϕl andkl in terms of8I :

8I = 8ϕl ,kl =
80

2π
(2πkl − ϕl) H⇒ kl − ϕl

2π
= 8I

80
. (10)

The quantity8I/80 may be uniquely expressed as the sum of an integerN and a remainder
α:

8I

80
= N + α − 1

2 6 α <
1
2. (11)

As kl is an integer and− 1
2 6 −ϕl/2π < 1

2, it follows that N = kl and α = −ϕl/2π .
The values of both the parametersϕl andkl are completely determined by the values of the
external parametersI andθ0, which also determine8I . Here we have an interesting situation
in that the external physical parameters (I, θ0) determine not only a unique eigenfunction
and hence a unique state for the system, but also fix the phase parameterϕl which defines the
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momentum operator̂pϕl . Different values of (I, θ0) define different momentum operators:
there is a sense in which TSCRs with different (I, θ0) are different physical systems. We
can highlight the dependence of the state on (I, θ0) by labelling the eigenfunctionsψ l

ϕl ,kl
(θ)

asψ l
I,θ0
(θ):

ψ l
ϕl ,kl
(θ) = ψ l

I,θ0
(θ) = 1√

2πa
exp i

(
2π8I

θ080

)
θ. (12)

Likewise, the eigenvalues may be labelled as

pϕl ,kl = pl
I,θ0
= 2e8I

aθ0
jϕl ,kl = j l

I,θ0
= 8I

Ll
= Il 8ϕl ,kl = 8l

I,θ0
= 8I . (13)

The right-hand side is quantized in the same manner. We identifyHr with the Hilbert
spaceL2(Sr) of square-integrable functions on the intervalSr = {θ ∈ [θ0, 2π ]}. We define
the domain and the operatorŝpϕr (representing momentum),̂Jϕr (current) and8̂ϕr (flux)
by analogy with the left-hand side. Sinceϕr and the quantum numberkr which labels the
common eigenfunctions of these operators are found to be fully determined by the external
parameters (I, θ0), so thatkl = kr = k andϕl = ϕr = ϕ, we shall drop the subscripts from
now on whenever no confusion is likely. The right-hand eigenfunctions of momentum,
current and flux are

ψr
ϕr,kr

(θ) = ψ r
I,θ0
(θ) = 1√

2πa
exp i

[
2π8I

(2π − θ0)80
(2π − θ)

]
(14)

and their right-hand eigenvalues are

pr
I,θ0
= − 2e8I

a(2π − θ0)
j r
I,θ0
= −8I

Lr
= −Ir 8r

I,θ0
= −8I . (15)

The right-hand current eigenvaluesj r
I,θ0

are negative because the current is actually flowing
down through the right-hand side, not up around it.

Note that the cancelling out of left and right generated fluxes implies thatψ l
I,θ0
(θ0) =

ψ r
I,θ0
(θ0). This, together with the fact thatψ l

I,θ0
(0) = ψ r

I,θ0
(2π), ensures that the

wavefunction is single valued at the pointsθ = 0 and θ = θ0. As will be seen later,
this enables us to introduce a continuous wavefunction around the entire ring.

2.1.2. Quantization of the entire ring.To quantize the entire ring, we take the following
steps.

(1) We associate the direct sum Hilbert spaceH = Hl ⊕Hr with the entire ring. State
vectors (wavefunctions) of the system must be of the formφ l ⊕ φr with φ l 6= 0 6= φr, since
φ l = 0, for example, would imply the condensate being solely on the right-hand side, which
is never the case.

(2) Observables pertaining to only one side are represented by the extension of their
operators in one or other of the subspacesHl andHr to operators in the direct sum space
H. These extensions must satisfy two requirements:

(a) they must possess the same eigenvalues as the original operators;
(b) their eigenfunctions must be state vectors of the system; that is, not of the form

φ l ⊕ 0 or 0⊕ φr.
In the present case, for any given (I, θ0), there exists a unique state for each side of the

ring, so that there is only one possible combination of left- and right-hand states representing
a pure state of the system. The states of the ring are

9I,θ0 = 9ϕ,k = ψ l
ϕ,k ⊕ ψ r

ϕ,k. (16)
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The operator extensions must admit these state vectors as eigenvectors. This helps to
establish how the operators should be extended. The apparently natural expressionsp̂ϕl ⊕ Îr
and Îl ⊕ p̂ϕr , or p̂ϕl ⊕ 0̂r and 0̂l ⊕ p̂ϕr , are not an appropriate choice since these operators
do not satisfy the above two requirements.

(3) Instead, the left- and right-hand canonical momentum operators are represented in
H by the operator extensions:

P̂ l
ϕ = p̂ϕl ⊕ C l

I,θ0
Îr and P̂ r

ϕ = Cr
I,θ0
Îl ⊕ p̂ϕr (ϕ = ϕl = ϕr) (17)

whereÎl and Îr are the identity operators inHl andHr respectively.C l
I,θ0

andCr
I,θ0

are two
constants determined by the external parameters (I, θ0):

C l
I,θ0
= 2e8I

aθ0
Cr
I,θ0
= − 2e8I

a(2π − θ0)
. (18)

The operatorŝP l
ϕ andP̂ r

ϕ admit the state vectors9I,θ0 as eigenfunctions, sinceC l
I,θ0

andCr
I,θ0

are in fact the eigenvalues ofp̂ϕl andp̂ϕr for any given (I, θ0). It follows that the eigenvalues
of P̂ l

ϕ + P̂ r
ϕ and P̂ l

ϕ − P̂ r
ϕ are respectively the sum and difference of the eigenvalues ofp̂ϕl

and p̂ϕr .
Other extensions follow naturally. We have

Ĵ l
ϕ =

e

πam
P̂ l
ϕ Ĵ r

ϕ =
e

πam
P̂ r
ϕ 8̂l

ϕ = Ll Ĵ
l
ϕ 8̂r

ϕ = LrĴ
r
ϕ. (19)

The form of these operator extensions is a general feature of our quantization by parts
approach. The reason why we cannot extend an operator simply by taking its direct sum
with an identity operator is because we are dealing with a system (the condensate) which
is always present on both sides of the ring, rather than a system which could be confined
entirely to one subspace or the other.

(4) The Hamiltonian for the whole system (equation (4)) is quantized as the operator

Ĥϕ = 1

2m

[
θ0

2π
(P̂ l

ϕ)
2+

(
2π − θ0

2π

)
(P̂ r

ϕ)
2

]
(20)

which admits9I,θ0(θ) as an eigenfunction.
(5) We can define athrough momentumoperatorP̂ tϕ , representing the net momentum

of the outgoing condensate:

P̂ tϕ = P̂ l
ϕ − P̂ r

ϕ. (21)

(6) The through current, whose eigenvalues we expect to beI for all θ0, is represented
by the operator

Ĵ t
ϕ = Ĵ l

ϕl
+ Ĵ r

ϕr
or equivalently Ĵ t

ϕ =
e

πam
P̂ t
ϕ. (22)

(7) We can formally define a total enclosed flux operator8̂Tϕ by considering the sum
of the fluxes generated by the left- and right-hand currents.

8̂Tϕ = 8̂l
ϕ + 8̂r

ϕ. (23)

Since there are no external magnetic fields present, we expect it to have a single eigenvalue
of zero for all values of (I, θ0).

All these operators share the same eigenfunctions as the Hamiltonian. Respective
eigenvalues are:

pl
I,θ0
= 2e8I

aθ0
pr
I,θ0
= − 2e8I

a(2π − θ0)
pt
I,θ0
= πam

e
I

jtI,θ0 = Il + Ir = I EI,θ0 =
82
I

2Ll
+ 82

I

2Lr
8TI,θ0

= 8I −8I = 0.

(24)
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As a function on the entire ring, the wavefunction is single valued and continuous atθ = 0
andθ = θ0. We may thus write it as

9I,θ0(θ) = χ l(θ)ψ
l
I,θ0
(θ)+ χ r(θ)ψ

r
I,θ0
(θ) (25)

where the characteristic functionsχ l(θ) of the intervalθ ∈ (0, θ0], andχ r(θ) of the interval
θ ∈ (θ0, 2π ], have been introduced to convert functions originally defined on one or other
of the subspacesHl or Hr to elements ofH. The semiclosed intervals are necessary
here to avoid ‘doubling’ the value of the function atθ = 0 andθ = θ0. This condensate
wavefunction is continuous around the ring, with the left- and right-hand components always
in phase at their meeting points. The importance of this feature will become apparent later
when an external magnetic field is taken into account.

As anticipated, the enclosed flux is always zero and both definitions of the through
current yield the applied currentI as the eigenvalues. The energy eigenvalue is the sum of
the stored magnetic energies associated with the flux8I generated in each side of the ring.

2.1.3. Superselection rules.What we have here is a model of a one-state quantum system,
similar to the case of an isolated TSCR studied in our previous paper [9]. The external
parameters (I, θ0) determine not only the operatorŝP l

ϕ and P̂ r
ϕ but also their specific

eigenvaluespl
I,θ0

and pr
I,θ0

, thus completely fixing the state of the system. There is no
possibility of a coherent superposition of different states inH since there is no superposition
of values of I or θ0. In view of our subsequent studies, our aim here is to establish
a model which will accommodate all possible values of the external parameters (I, θ0)
without allowing their coherent superposition. This may be achieved by forming direct
integral Hilbert spaces and introducing SSRs.

We first construct the direct integral Hilbert spaces. LetH(I, θ0) be the subspace ofH
spanned by9I,θ0(θ). For any particular value ofθ0 we can construct a direct integral over
the measure dI [22]:

H⊕(θ0) =
∫ ⊕
H(I, θ0) dI (26)

where the integral is over the range of values ofI for which the system remains
superconducting. The upper limit onI is determined by the requirement that neither of
the currents in the left- and right-hand paths exceeds the critical currentJc of the bulk
material. That is, bothIl < Jc andIr < Jc:

H⇒ I <
2π

2π − θ0
Jc and I <

2π

θ0
Jc. (27)

The upper boundI+θ0
on I is determined by whichever of these inequalities is the least. The

direct integral overI is thus over the range of allowed values ofI : I ∈ (0, I+θ0
).

To accommodate different values ofθ0, we now construct a direct integral of the family
of Hilbert spacesH⊕(θ0) with respect to the measure dθ0:

H⊕ =
∫ ⊕
H⊕(θ0) dθ0 =

∫ ⊕
dθ0

∫ ⊕
H(I, θ0) dI (28)

where the double direct integral is over the rangesθ0 ∈ (0, 2π) andI ∈ (0, I+θ0
).

Any particular (I, θ0) determinesϕ and thus fixes the relevant set of operatorsP̂ l
ϕ ,

P̂ r
ϕ , P̂ t

ϕ , Ĵ t
ϕ , Ĥϕ and 8̂Tϕ in H. Let P̂ l(I, θ0), P̂ r(I, θ0), P̂ t(I, θ0), Ĵ t(I, θ0), Ĥ (I, θ0) and
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8̂T (I, θ0) be their respective reductions to the subspaceH(I, θ0). Then we can define direct
integral operators acting onH⊕as follows

P̂⊕l =
∫ ⊕

dθ0

∫ ⊕
dI P̂ l(I, θ0) 8̂⊕T =

∫ ⊕
dθ0

∫ ⊕
dI 8̂T (I, θ0) (29)

where the limits of integration are as defined previously. The operatorsP̂⊕r , P̂⊕t , Ĵ⊕t and
Ĥ⊕ are defined in the same way.

We can now formalise our description in terms of the following postulate.

Postulate 1.A TSCR under standard conditions subject to an applied currentI flowing in
at θ = 0 and out atθ = θ0 in the absence of any external magnetic fluxes possesses a
continuous SSR so that its associated Hilbert space is the direct integral spaceH⊕ and its
observables are represented by decomposable self-adjoint operators in this space.

Postulate 2.The canonical momenta on each side of the ring are quantized as the operators
P̂⊕l and P̂⊕r . The through momentum is represented by the operatorP̂⊕t , the Hamiltonian
by Ĥ⊕, the through current bŷJ⊕t and the total flux enclosed in the ring bŷ8⊕T .

Note that there is no destructive interference in the output current as a function ofθ0,
in contrast to a double slit-type experiment for electrons. The behaviour of the present
system is rather classical. Once external magnetic fluxes are included, however, quantum
behaviour is exhibited in the form of the quantization of enclosed magnetic flux.

2.2. Inclusion of external magnetic fields

We now wish to incorporate the effects of a constant and uniform external magnetic field
of magnitudeB perpendicular to the plane of the ring (i.e. along the positivez-axis). In
cylindrical coordinates(r, θ, z) the corresponding vector potential isA = (0, 1

2Br, 0), which
has magnitudeA(r) = 1

2Br. We simply replace the previous Hamiltonian by the new path-
weighted Hamiltonian

H = 1

2m

[
θ0

2π
(pl − 2eA)2+

(
2π − θ0

2π

)
(pr − 2eA)2

]
(30)

whereA = A(a) = Ba/2 is the magnitude of the vector potential at the ring. As before, we
proceed by quantizing the left- and right-hand sides separately. The ring is still fed with a
currentI , but the presence of the external magnetic field changes the left and right currents
Il andIr to new valuesI ′l andI ′r .

2.2.1. Quantization of the two sides.On the left, the Hilbert space is taken to be
Hl = L2(Sl) as defined previously. The canonical momentum is quantized as the selfadjoint
operatorp̂ϕ′l = −(ih̄/a)(d/dθ) on the domain

Dϕ′l = {φ l : φ l ∈ AC(Sl); φ l(0+) = eiϕ′lφ l(θ0−); p̂ϕ′lφ l ∈ L2(Sl)}. (31)

Left-hand current and left generated flux operators may be defined as [9]

Ĵϕ′l =
e

πam
(p̂ϕ′l − 2eAÎl) 8̂ϕ′l = Ll Ĵϕ′l =

θ0

2π

πa

e
(p̂ϕ′l − 2eAÎl). (32)

These operators share a common set of eigenfunctions

ψ l
ϕ′l ,k

′
l
(θ) = 1√

2πa
exp

[
i

(
2πk′l − ϕ′l

θ0

)
θ

]
k′l = 0,±1 . . . . (33)
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To facilitate a comparison with our earlier results in the absence of an external magnetic
field we definek′l = kl + `l andϕ′l = ϕl + λl wherekl andϕl are the parameters determined
by I andθ0 (equation (10)) and are independent ofA. Sinceϕl = ϕr = ϕ, we may replace
the subscriptϕ′l by ϕ + λl and rewrite the operatorŝpϕ′l , Ĵϕ′l , 8̂ϕ′l and Ĵ c

ϕ′l
respectively as

p̂ϕ,λl , Ĵϕ,λl , 8̂ϕ,λl and Ĵ c
ϕ,λl

. At present,λl is a real number in the interval(−π, π ]. In due
course we shall need to fix its value: it will turn out to be the phase due to the enclosed
magnetic flux.

We can rewrite the eigenfunctions as

ψ l
I,θ0,λl ,`l

(θ) = 1√
2πa

exp

[
i

(
2π8I

θ080

)
θ

]
exp

[
i

(
2π`l − λl

θ0

)
θ

]
`l = 0,±1 . . . (34)

with respective eigenvalues:

pI,θ0,λl ,`l =
h̄

a

(
2π8I

θ080
+ 2π`l − λl

θ0

)
jI,θ0,λl ,`l = Il + 1

L

[
80

(
2π`l − λl

θ0

)
−8ex

]
(35)

8I,θ0,λl ,`l = 8I + 80

2π
(2π`l − λl)− θ0

2π
8ex (36)

where8ex = 2πaA is the external flux applied to the ring.
The left-hand current eigenvalues (equation (35)) are composed of two parts: the applied

currentIl , and an additional part which, together with the corresponding result for the right-
hand path, may be interpreted as the screening current, i.e. the current circulating in the
ring maintaining the difference between the enclosed and applied magnetic fluxes [16]. We
therefore define acirculating current operator for the left-hand path:

Ĵ c
ϕ,λl
= Ĵϕ,λl − Il Îl (37)

with eigenvalues

j c
I,θ0,λl ,`l

= 1

L

[
80

(
2π`l − λl

θ0

)
−8ex

]
. (38)

Let 8T be the total flux enclosed by the ring. The circulating current is responsible for
maintaining the difference between the enclosed and externally applied fluxes, so should be
equal to(8T − 8ex)/L. Equating this expression with the circulating current eigenvalues
(equation (38)) leads to the following constraint onλl and`l :

(8T −8ex) = 80

(
2π`l − λl

θ0

)
−8ex H⇒ θ08T

2π80
= `l − λl

2π
. (39)

The quantityθ08T /2π80 is uniquely expressible asN + α, whereN is an integer and
− 1

2 6 α < 1
2. As `l is an integer and− 1

2 6 −(λl/2π) < 1
2, it follows that k′l = N and

α = −λl/2π . The values of̀ l and λl are thus completely determined by the enclosed
flux 8T and the output lead positionθ0. We may express the momentum eigenfunctions as
functions of the physical parametersI , θ0 and8T , rather than the formal parametersϕ, λl ,
and`l :

ψ l
I,θ0,8T

(θ) = 1√
2πa

exp i

[
2π8I

θ080
+ 8T

80

]
θ. (40)

This notation highlights the individual contributions to the wavefunction from the applied
current and the enclosed magnetic flux.
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Following an analogous procedure on the right, we define the operatorsp̂ϕ,λr , Ĵϕ,λr ,
8̂ϕ,λr , andĴ c

ϕ,λr
, representing respectively the canonical momentum, the right-hand current,

the right generated flux and the circulating current.
As previously, bothλr and the quantum number`r labelling the common eigenfunctions

of these operators are fully determined by the enclosed flux and output lead position. In
terms of the enclosed flux and applied current, the right-hand eigenfunctions are

ψ r
I,θ0,8T

(θ) = 1√
2πa

exp i

[
2π8I

(2π − θ0)80
− 8T

80

]
(2π − θ). (41)

In requiring that the circulating current be the same on both sides, we have in effect imposed
a constraint on the system, helping to link the left- and right-hand sides.

2.2.2. The whole system.We are now able to associate the entire ring with the direct
sum of the individual Hilbert spaces:H = Hl ⊕ Hr. State vectors will be of the form
ψ l
I,θ0,8T

(θ) ⊕ ψ r
I,θ0,8T

(θ). We have seen that states of the left- and right-hand sides are
completely determined by the values ofI , θ0 and8T . Written as functions on the circleS,
states of the entire ring will be of the form

9Q(θ) = 9I,θ0,8T (θ) = χl(θ)ψ l
I,θ0,8T

(θ)+ χ r(θ)ψ
r
I,θ0,8T

(θ) (42)

whereQ denotes any set of allowed parameter values (I, θ0,8T ), or, equivalently, the
corresponding set (ϕ, `l, λl, λr, `r). In the previous case, where there was no external
magnetic field, the left- and right-hand wavefunctions always matched up at their meeting
points to give a continuous wavefunction over the entire ring. In this case, we use the
constraint that the condensate wavefunction is single valued† around the ring [14, p 40] to
ensure that the condensate wavefunction is continuous around the entire ring. This means
that the left- and right-hand sides must match up at their meeting points, resulting in(

2π8I

θ080
+ 8T

80

)
θ0 =

(
2π8I

(2π − θ0)80
− 8T

80

)
(2π − θ0)+ 2nπ ⇒ 8T = n80. (43)

The only allowed states of the entire ring are those for which the total enclosed flux is
quantized. As8T = n80 always, we may relabel the functions9I,θ0,8T (θ), ψ

l
I,θ0,8T

(θ)

andψ r
I,θ0,8T

(θ) as9I,θ0,n(θ), ψ
l
I,θ0,n

(θ) andψ r
I,θ0,n

(θ) respectively. We may also relabel the
eigenvaluepI,θ0,λr,`r aspl

I,θ0,n
, andpI,θ0,λr,`r aspr

I,θ0,n
.

As previously, operators representing observables of only one side may be extended
to the total Hilbert spaceH. There is an additional complication here in that the external
parameters (I, θ0) do not uniquely determine the eigenfunctions and eigenvalues of the
momentum operators. For a given (I, θ0), the state vectors are of the form9I,θ0,n(θ) =
ψ l
I,θ0,n

(θ) ⊕ ψ r
I,θ0,n

(θ) for somen. The extended momentum operators must admit these

† Consider the example of the direct sumL2(R) = L2(−∞, 0]⊕L2[0,∞). Let φ(x) ∈ L2(R) andφ = φ− ⊕φ+
whereφ− ∈ L2(−∞, 0] and φ+ ∈ L2[0,∞). Supposeφ− is continuous in(−∞, 0] and φ+ in [0,∞). By
formally extending the functionsφ− andφ+ to R with φ−(x) = 0, x ∈ (0,∞) andφ+(x) = 0, x ∈ (−∞, 0), we
can write

φ(x) = χ−(x)φ−(x)+ χ+(x)φ+(x) x ∈ R
where χ−(x) and χ+(x) are respectively the characteristic functions of the intervals(−∞, 0] and (0,∞).
Alternatively we could have chosenχ− and χ+ respectively to be the characteristic functions of the intervals
(−∞, 0) and [0,∞). This alternative choice will only produce the same value ofφ(0) if φ−(0) = φ+(0). So, the
requirement of single valueness implies thatφ−(x) andφ+(x) match up at the boundary point, which also results
in the continuity ofφ(x) in R.
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state vectors as eigenfunctions. This necessitates the introduction of new operators onHl

andHr defined by

℘̂r
I,θ0
=
∑
n

pl
I,θ0,n

℘̂r
n ℘̂r

n = |ψ r
I,θ0,n
〉〈ψ r

I,θ0,n
| (projector onHr)

℘̂ l
I,θ0
=
∑
n

pr
I,θ0,n

℘̂ l
n ℘̂ l

n = |ψ l
I,θ0,n
〉〈ψ l

I,θ0,n
| (projector onHl).

(44)

To satisfy the two requirements concerning eigenvalues and eigenvectors of the operator
extensions (requirements 2(a) and 2(b) in section 2.1.2), we make the following choices:

P̂ l
ϕ,λl
= p̂ϕ,λl ⊕ ℘̂r

I,θ0
Ĵ l
ϕ,λl
= e

πam
(P̂ϕ,λl − 2eAÎ) 8̂l

ϕ,λl
= Ll Ĵ

l
ϕ,λl

P̂ r
ϕ,λr
= ℘̂ l

I,θ0
⊕ p̂ϕ,λr Ĵ r

ϕ,λr
= e

πam
(P̂ϕ,λr − 2eAÎ) 8̂r

ϕ,λr
= Ll Ĵ

r
ϕ,λr

Ĵ cl
ϕ,λl
= Ĵ l

ϕ,λl
− Il Î Ĵ cr

ϕ,λr
= Ĵ r

ϕ,λr
+ IrÎ whereÎ = (Îl ⊕ Îr).

(45)

We have defined two operators representing the circulating current, one derived from the
left and one from the right. Since they have the same eigenvalues, namely(8T −8ex)/L,
we can define a circulating current operator for the ring as a whole:

Ĵ c
ϕ,λl ,λr

= 1
2(Ĵ

cl
ϕ,λl
+ Ĵ cr

ϕ,λr
). (46)

Likewise, we may define a circulating momentum operator in terms of either the left- or
right-hand momentum:

P̂ cl
ϕ,λl
= P̂ l

ϕ,λl
− 2e8I

aθ0
Î P̂ cr

ϕ,λr
= P̂ r

ϕ,λr
+ 2e8I

a(2π − θ0)
Î. (47)

Since these two operators also have the same eigenvalues, we can introduce a circulating
momentum operator for the whole ring:

P̂ c
ϕ,λl ,λr

= 1
2(P̂

cl
ϕ,λl
+ P̂ cr

ϕ,λr
). (48)

The Hamiltonian describing the system (equation (30)) is quantized as

Ĥϕ,λr,λr =
1

2m

[
θ0

2π
(P̂ l

ϕ,λl
− 2eAÎ)2+

(
2π − θ0

2π

)(
P̂ r
ϕ,λr
− 2eAÎ

)2
]
. (49)

The total enclosed flux is equal to the sum of the fluxes generated on each side of the ring
plus the externally applied flux8ex and is represented by the operator

8̂Tϕ,λl ,λr
= 8̂l

ϕ,λl
+ 8̂r

ϕ,λr
+8exÎ. (50)

As we might expect from our previous expression for the total enclosed flux, an equivalent
definition may be given in terms of the circulating momentum:

8̂Tϕ,λl ,λr
= πa

e
P̂ c
ϕ,λl ,λr

. (51)

We may also define through momentum and through current operators as

P̂ t
ϕ,λl ,λr

= P̂ϕ,λl − P̂ϕ,λr Ĵ t
ϕ,λl ,λr

= Ĵϕ,λl − Ĵϕ,λr =
e

πam
P̂ t
ϕ,λl ,λr

. (52)
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All these operators share a complete set of common eigenfunctions9Q(θ) = 9I,θ0,n(θ).
Respective eigenvalues are:

pl
Q
= h̄
a

(
2π8I

θ080
+ n

)
pr
Q
= − h̄

a

(
2π8I

(2π − θ0)80
− n

)
pc
Q
= pcl

Q
= pcr

Q
= h̄n

a
pt
Q
= πam

e
I

j l
Q
= Il + 1

L
(n80−8ex) j r

Q
= −Ir + 1

L
(n80−8ex)

j c
Q
= j cl

Q
= j cr

Q
= 1

L
(n80−8ex) j t

Q
= Il + Ir = I 8T

Q
= n80

E
Q
= 1

2Ll

(
θ0

2π
(n80−8ex)+8I

)2

+ 1

2Lr

(
(2π − θ0)

2π
(n80−8ex)+8I

)2

.

(53)

The requirement that the bulk superconductivity of the ring is not destroyed will place
restrictions on the number of flux quanta that may be enclosed by the ring [9]. For given
values of (I, θ0), the system has a number of states available to it, but the total left- and
right-hand currents must both remain below the bulk critical supercurrentJc:∣∣∣∣ θ0

2π
I + n80

L

∣∣∣∣ < Jc and

∣∣∣∣ (2π − θ0)

2π
I − n80

L

∣∣∣∣ < Jc. (54)

The number of enclosed flux quantan must satisfy both these inequalities, which define
integer upper and lower limitsN+I,θ0

(positive) andN−I,θ0
(negative) onn. For given (I, θ0),

we postulate that the system is associated with the Hilbert space⊕nH(I, θ0, n), where
H(I, θ0, n) is the one-dimensional subspace spanned by9I,θ0,n(θ) and the summation is
over the rangen ∈ (N−I,θ0

, N+I,θ0
).

2.2.3. Superselection rules.If the superposition principle were to apply here, the ring
could be in a superposition9I,θ0,n + 9I,θ0,m (n 6= m) of states of different enclosed flux
quanta. In order to arrive at a correct description of a TSCR, which is always found to
enclose a definite integer number of flux quanta, we need to introduce a SSR forbidding
coherent superpositions of states of differentn. The supersectors will be the one-dimensional
subspacesH(I, θ0, n). For any fixed pair (I, θ0), the system will possess a discrete SSR
and be associated with the direct sum space⊕nH(I, θ0, n).

We may unify our description further by introducing continuous SSRs over the possible
values ofI and θ0. We follow the same procedure as in the previous section to construct
a direct integral with respect to the measures dI and dθ0, where the integrals are over the
permitted ranges ofθ0 andI :

H⊕ =
∫ ⊕

dθ0

∫ ⊕
⊕nH(I, θ0) dI. (55)

For any state9I,θ0,n(θ), the values ofϕ, λl and λr are completely fixed and hence also
the set of operatorŝP l

ϕ,λl
, P̂ r

ϕ,λr
, P̂ c

ϕ,λl ,λr
, P̂ t

ϕ,λl ,λr
, Ĵ c

ϕ,λl ,λr
, Ĵ t

ϕ,λl ,λr
, Ĥϕ,λl ,λr and 8̂Tϕ,λl ,λr

. Let

P̂ l(I, θ0, n), P̂ r(I, θ0, n), P̂ c(I, θ0, n), P̂ t(I, θ0, n), Ĵ c(I, θ0, n), Ĵ t(I, θ0, n), Ĥ (I, θ0, n),
and 8̂T (I, θ0, n) be their respective reductions to the subspaceH(I, θ0, n). Then we can
define direct integral operators acting onH⊕ as follows

P̂⊕l =
∫ ⊕

dθ0

∫ ⊕
⊕nP̂ l(I, θ0, n)dI 8̂⊕T =

∫ ⊕
dθ0

∫ ⊕
⊕n8̂T (I, θ0, n)dI (56)

and likewise forP̂⊕r , P̂⊕c , P̂⊕t , Ĵ⊕c , Ĵ⊕t andĤ⊕.
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We now make the following postulates.

Postulate 3.A TSCR under standard conditions subject to a currentI applied atθ = 0
and flowing out atθ0 possesses continuous and discrete SSRs so that its associated Hilbert
space is the direct integral spaceH⊕ with all its observables represented by decomposable
self-adjoint operators in this space.

Postulate 4.The left and right canonical momenta are quantized as the operatorsP̂⊕l andP̂⊕r
respectively. The Hamiltonian is quantized as the operatorĤ⊕. The through momentum,
through current, circulating momentum and circulating current are represented respectively
by the operatorsP̂⊕t , Ĵ⊕t , P̂⊕c and Ĵ⊕c , and the total enclosed flux by the operator8̂⊕T .

The system has the following properties.
(1) Pure states, in the sense of Dirac delta function normalization in the direct integral

space [23], correspond one-to-one to the eigenfunctions9I,θ0,n(θ), or, equivalently, to the
one-dimensional subspacesH(I, θ0, n).

(2) As in the case of a uniform TSCR with no applied current [9], the position operator
is not decomposable so does not represent an observable: the pseudoparticle representing
the condensate is wholly delocalized around the ring, so the question as to which path the
condensate took does not arise.

(3) For a given external environment(I, θ0,8ex), the system has a number of states
available to it, distinguished byn. The system’s state is independent of8ex but is partly
determined byI andθ0.

In contrast to the Aharonov–Bohm effect, here wealwayshave constructive interference
[24, p 6]. It follows from the assumption that the wavefunction around the ring is single
valued and that the separate wavefunctions on the left and right have to be in phase at their
meeting point. In this case, it is clear that the externally applied magnetic field plays no
role in the phase matching at all. As can be seen from the pure-state wavefunctions, the
relevant factors are the enclosed fluxn80 and the flux8I , itself determined by the applied
currentI and the output lead positionθ0. These two fluxes are independent of each other:
they each separately satisfy the phase matching condition. The enclosed flux achieves this
by being quantized, the8I component by the current splitting ratio. Hence, the system is
able to remain superconducting for any combination of allowed values of (I, θ0) and8ex.
The value of the output current is independent of both the applied flux and the output lead
position: it exhibits no Aharonov–Bohm-type interference pattern, either as a function of
8ex or θ0.

This system clearly possesses both classical and quantum characteristics. It does not
entirely follow classical theory: quantum mechanics is required to obtain quantization of
the enclosed flux.

3. dc SQUIDs: TSCRs containing two JJs

Having characterized the effect of an applied current on a TSCR in a static magnetic field,
we now turn our attention to a dc SQUID: a TSCR containing two JJs which are parallel with
respect to an applied dc supercurrent (figure 2). The maximum value of the dc supercurrent
that can be passed through the ring is found to display an interference pattern as a function of
the externally applied magnetic flux8ex enclosed by the ring. For the sake of simplicity, we
shall consider a symmetric device, with equal path lengths and identical JJs. The standard
phenomonology (which is what we are trying to axiomatise) leads to equations for non-
equal path lengths which cannot be solved analytically: computational methods show that
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Figure 2. dc SQUID configuration.

the solutions are ‘tilted’ versions of the symmetric solutions [10, pp 375–82]. The exact
position of the JJs along either of the paths does not affect the behaviour of the device as
a whole. In a theoretical analysis of the device, it is most convenient to imagine that each
JJ is located at one or other of the ends of the bulk intervals: we shall take them to be
adjacent to the output lead.

Josephson’s analysis of quantum tunnelling through thin insulating barriers (JJs) between
superconductors [25–27] leads to the well known Josephson equationj = i0 sinλ for
the dc supercurrentj through a JJ. The parameterλ is the phase difference between the
wavefunctions of the superconductors on either side of the junction and i0, known as the
critical current of the junction, is the maximum (super)current that may be passed through
it. The JJs in SQUIDs have critical currents satisfying i0 < 80/2πL, ensuring that their
properties are unambiguously determined by8ex [9, 14, 29]. Attempting to increase the
current above the value i0 leads to the appearance of a voltage across the JJ, the destruction
of dc superconductivity, and various phenomena known collectively as ac Josephson effects
[14].

In a dc SQUID the currents flowing through the left- and right-hand sides of the ring
must obey the respective Josephson equations for the left- and right-hand junctions. There
are two contributions to these currents: the applied current (which in equilibrium will equal
the through, or output, current), and the circulating currentjc which maintains any difference
between8T , the total flux enclosed in the ring, and the externally applied flux8ex. For a
symmetric configuration, the applied currentI will split equally between the left- and right-
hand paths [16]. The total currents in the left- and right-hand paths are thenjl = I/2+ jc

and jr = I/2− jc respectively. The requirement that the wavefunction be single valued
around the entire ring implies that the left and right wavefunctions must match up at their
meeting points. The total phases picked up along each path must be equal, modulo 2nπ

[11, 28]. These constraints lead to the standard equations characterizing the behaviour of a
dc SQUID.

(1) The Josephson equation for the applied supercurrent passing through the ring (which
by definition is positive):

I = i0 sinλl + i0 sinλr = 2i0 sinλ0 cos

(
π8T

80

)
(57)

where λl and λr are respectively the phase drops across the left- and right-hand JJs,
λ0 = (λl + λr)/2, andλl , λl and8T are related by [16, 28]:

λl = λ0− π8T /80+ nπ λr = λ0+ π8T /80− nπ for some integern. (58)
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(2) The related equation for the maximum through supercurrentIc (also known as the
critical current of the device), which occurs when| sinλ0| = 1 and8T = 8ex:

Ic = 2i0

∣∣∣∣cos

(
π8ex

80

)∣∣∣∣ . (59)

The critical current of the device is thus a80-periodic function of the applied flux, with
minima of zero when8ex = (n± 1

2)80 and maxima when8ex = n80. It is this result which
enables dc SQUIDs to operate as sensitive magnetometers. Small changes in a background
magnetic field may be detected via measurements of the maximum current that can be
passed through the ring without a potential difference appearing across it [10].

(3) Theflux–currentrelation:8T = 8ex+Ljc whereL is the inductance of the whole
ring [11].

(4) Theflux quantizationcondition (although the enclosed flux is actually not discretized
at all, having a continuous range of values):8T = [n− (λl − λr)/2π ]80.

We shall take these equations as defining the system and shall now show that it may be
modelled axiomatically within the mathematical framework which we have developed.

3.1. Modelling the system

We again start with a classical Hamiltonian that is an equally weighted sum of the energies
of the two possible classical paths.

H = 1

4m
[(pl − 2eA)2+ (pr − 2eA)2] − i0h̄

2e

[
cos

(
πa

h̄
pl

)
+ cos

(
πa

h̄
pr

)]
(60)

where the energies of the two JJs are characterized by the two momentum-dependent cosine
terms [9, 29–33]. In the terminology of Spilleret al [36], a Hamiltonian of this form,
in which the inductive energy plays the standard kinetic energy role, corresponds to the
‘magnetic’ picture rather than the ‘electric’ picture. As Spilleret al [36] showed, this is
a sensible choice when dealing with through currents (continuous charges) and quantized
fluxes, that although it is less obvious how junction capacitance (which we neglect in our
treatment) might be incorporated into this Hamiltonian†. The electric picture, in which
the capacitive energy acts as the kinetic energy term, thus facilitating treatment of junction
capacitances, is more appropriate for describing charge (rather than flux) quantized systems,
such as an isolated junction.

We assume that the JJs subtend negligibly small angles so that the bulk superconducting
sections on the left and right may be taken as occupying the intervalsθ ∈ [0, π) and
θ ∈ (π, 2π ] respectively. We proceed with quantization as in the previous sections, taking
the Hilbert spaceHl to be the spaceL2(Sl) of square-integrable functions on the interval
Sl = {θ ∈ [0, π)} with respect to the measureadθ . The canonical momentum is represented
by the operatorp̂ϕl = −(ih̄/a)(d/dθ) which is self-adjoint on the domain

Dϕl = {φ l : φ l ∈ AC(Sl) : φ l(0) = eiϕlφ l(π−); p̂ϕlφ
l ∈ L2(Sl)} (61)

whereAC(Sl) denotes the set of absolutely continuous functionsφ l(θ) on the intervalSl

andϕl is a real number in the interval(−π, π ].

† There are different ways to introduce an electric flux operatorQ̂ [37]. For example, a common practice would
be to use the commutation relation between the electric flux and the magnetic flux operators: [8̂, Q̂] = ih̄. In
our formulation8̂ is linear inp̂ϕ` ; clearly an appropriate operator linear inϕ` will satisfy the above commutation
relation. The technicalities involved will be discussed elsewhere.
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The total left-hand current and the magnetic flux generated by this current are represented
by

Ĵϕl =
e

πam
(p̂ϕl − 2eAÎl) 8̂ϕl =

L

2
Ĵϕl =

πa

2e
(p̂ϕl − 2eAÎl) (62)

where we have again assumed that the inductance of the ring is uniform and hence that the
inductance of the left-hand path isLl = L/2. These operators share common eigenfunctions

ψ l
ϕl ,k
(θ) = 1√

2πa
exp i

[
2πk − ϕl

π

]
θ k = 0,±1± 2, . . . (63)

with eigenvalues:

pϕl ,k =
h̄

πa
(2πk − ϕl) jϕl ,k =

1

L

[
(2πk − ϕl)

π
80−8ex

]
8ϕl ,k =

(2πk − ϕl)

2π
80− 8ex

2
.

(64)

The Hamiltonian on the left-hand side is taken to be

Hl = 1

4m
(pl − 2eA)2− i0h̄

2e
cos

(
πa

h̄
pl

)
(65)

and is quantized as

Ĥϕl =
1

4m
(p̂ϕl − 2eAÎl)2− i0h̄

2e
cos

(
πa

h̄
p̂ϕl

)
(66)

with eigenvalues

Eϕl ,k =
1

4L

[
80

(
2πk − ϕl

π

)
−8ex

]2

− i0h̄

2e
cosϕl . (67)

On the right-hand side we takeHr to be the spaceL2(Sr) of square-integrable functions
on the intervalSr = {θ ∈ (π, 2π ]}. We define the selfadjoint operatorp̂ϕr = −(ih̄/a))(d/dθ)
on the domain

Dϕr = {φr : φr ∈ AC(Sr) : φr(π+) = e−iϕrφr(2π); p̂ϕrφ
r ∈ L2(Sr)} (68)

whereAC(Sr) denotes the set of absolutely continuous functionsφr(θ) on the intervalSr,
and ϕr ∈ (−π, π ]. We assume that the particle’s canonical momentum is represented in
Hr by the operatorp̂ϕr and we define the total right-hand current and right generated flux
operators as

Ĵϕr =
e

πam
(p̂ϕr − 2eAÎr) 8̂ϕr =

πa

2e
(p̂ϕr − 2eAÎr). (69)

These operators share common eigenfunctions

ψ r
ϕr,k′(θ) =

1√
2πa

exp i

[
2πk′ − ϕr

π

]
(2π − θ) k′ = 0,±1,±2, . . . (70)

with respective eigenvalues:

pϕr,k′ = −
h̄

πa
(2πk′ − ϕr) jϕr,k′ = −

1

L

[(
2πk′ − ϕr

π

)
80+8ex

]
8ϕr,k′ = −

1

2

[(
2πk′ − ϕr

π

)
80+8ex

]
.

(71)
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Taking the Hamiltonian on the right-hand side to be

Hr = 1

4m
(pr − 2eA)2− i0h̄

2e
cos

(
πa

h̄
pr

)
(72)

we quantize it as

Ĥϕr =
1

4m
(p̂ϕr − 2eAÎr)24m− i0h̄

2e
cos

(
πa

h̄
p̂ϕr

)
(73)

with eigenvalues

Eϕr =
1

4L

[
80

(
2πk′ − ϕr

π

)
−8ex

]2

− i0h̄

2e
cosϕr. (74)

This system is not yet well defined, because we have not fixed the values ofϕl andϕr,
nor do we have the Josephson equations. One way to solve these problems is by an energy
minimization process [9, 34, 35]. If we minimize the eigenvaluesEϕl with respect toϕl we
obtain the Josephson equation for the left-hand side, and minimization ofEϕr with respect
to ϕr yields the Josephson equation for the right-hand side:

j l
Q
= i0 sinϕl − j r

Q
= i0 sinϕr. (75)

We now see thatϕl andϕr may be identified with the traditional phase differencesλl and
λr across the JJs in the left- and right-hand paths, and the usual Josephson equation applies
to both paths separately. Our assumption that the applied current flowing in atθ = 0 is
positive effectively restricts the values of the phasesϕl , ϕr to the range(0, π ], so thatj l

Q
is

positive andj r
Q

is negative.

3.1.1. The whole ring. The whole ring is associated with the direct sum spaceH = Hl⊕Hr.
State vectors are assumed to be of the form9ϕl ,ϕr,k,k′ = ψ l

ϕl ,k
⊕ψ r

ϕr,k′ . Operators defined on
one or the other of the subspaces may be formally extended to the entire space subject to the
two requirements stated previously. LetP̂ l

ϕl
andP̂ r

ϕr
be the extensions of the two momentum

operators, which we construct in the following manner. For the sake of simplicity, let us
confine ourselves to a small applied flux,8ex ∈ (−80/2,80/2). When8ex = 0, symmetry
and the flux quantization condition implyj c

Q = 0 andjϕl ,k = jϕr,k′

⇒ 8T = 0⇒ ϕl = ϕr and k = k′ ⇒ 1
2I = i0 sinϕl = i0 sinϕr. (76)

As |8ex| increases from zero,ϕl 6= ϕr, leading to a non-zero enclosed flux8T . The
circulating current opposes8ex, so that|8T | < |8ex|, andk = k′ is unchanged. That is,
under these conditions, a given external environment (I , 8ex), fully determinesϕl andϕr

and hence the states, operators and eigenvalues for both sides of the ring. The state vector
is

9I,8ex = 9ϕl ,ϕr,k,k = ψ l
ϕl ,k
⊕ ψ r

ϕr,k
. (77)

This makes it easy to construct the extensions of the momentum operators. We have

P̂ l
ϕl
= p̂ϕl ⊕ C l

I,8ex
Îr P̂ r

ϕr
= Cr

I,8ex
Îl ⊕ p̂ϕr (78)

where the constantsC l
I,8ex

, Cr
I,8ex

are determined by the external parameters (I,8ex) and
are respectively the eigenvalues ofp̂ϕl and p̂ϕr . Other operator extensions are given by

Ĵ l
ϕl
= e

πam
(P̂ l

ϕl
− 2eAÎ) 8̂l

ϕl
= 1

2LĴ
l
ϕl

Ĵ r
ϕr
= e

πam
(P̂ r

ϕr
− 2eAÎ 8̂r

ϕr
= 1

2LĴ
r
ϕr
.

(79)
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The Hamiltonian for the entire system is quantized as

Ĥϕl ,ϕr =
1

4m
[(P̂ l

ϕl
− 2eAÎ)2+ (P̂ r

ϕr
− 2eAÎ)2] − i0h̄

2e

[
cos

(
πa

h̄
P̂ l
ϕl

)
+ cos

(
πa

h̄
P̂ r
ϕr

)]
. (80)

The through current will be the sum of the currents flowing through the left- and right-
hand paths and is represented by the operatorĴ t

ϕl ,ϕr
= Ĵ l

ϕl
− Ĵ r

ϕr
, where the negative sign is

present because of the direction in which the right-hand current was defined (around, rather
than through, the ring). We can also define the through current in terms of the through
momentum operator̂P t

ϕl ,ϕr
= P̂ l

ϕl
− P̂ r

ϕr

Ĵ t
ϕl ,ϕr
= e

πam
P̂ t
ϕl ,ϕr

. (81)

Likewise, the circulating current, represented by the operatorĴ c
ϕl ,ϕr

, can be defined in
terms of either the left and right current operators or the circulating momentum operator
P̂ c
ϕl ,ϕr
= (P̂ l

ϕl
+ P̂ r

ϕr
)/2:

Ĵ c
ϕl ,ϕr
= 1

2(Ĵ
l
ϕl
+ Ĵ r

ϕr
) or Ĵ c

ϕl ,ϕr
= e

πam
(P̂ c

ϕl ,ϕr
− 2eAÎ). (82)

For both the through and circulating currents, the two alternative definitions yield the same
sets of eigenvectors and eigenvalues. There are also various equivalent definitions of the
total enclosed flux operator̂8Tϕl ,ϕr

:

8̂Tϕl ,ϕr
= L

2
(Ĵ l
ϕl
+ Ĵ r

ϕr
)+8ex = LĴ c

ϕl ,ϕr
+8ex = πa

2e
(P̂ l

ϕl
+ P̂ r

ϕr
) = πa

e
P̂ c
ϕl ,ϕr

. (83)

All these operators share a common complete set of normalized eigenfunctions
9ϕl ,ϕr,k,k′(θ), which, written as functions on the entire ring, are of the form

9ϕl ,ϕr,k,k′(θ) =
1√
2πa

[
χ l(θ) exp i

(
2πk − ϕl

π

)
θ + χ r(θ) exp i

(
2πk′ − ϕr

π

)
(2π − θ)

]
.

(84)

Respective eigenvalues, whereQ denotes any set of allowed values (ϕl, ϕr, k, k
′), are:

pl
Q
= h̄

πa
(2πk − ϕl) j l

Q
= 1

L

(
2πk − ϕl

π
80−8ex

)
pr
Q
= − h̄

πa
(2πk′ − ϕr) j r

Q
= − 1

L

(
2πk′ − ϕr

π
80+8ex

)
pt
Q
= h̄

πa
(4π(k + k′)− (ϕl + ϕr) j t

Q
= j l

Q
− j r

Q

pc
Q
= − h̄

a
[2π(k − k′)− (ϕl − ϕr)] j c

Q
= 1

2
(j l

Q
+ j r

Q
)

E
Q
= 1

4L

[(
2πk − ϕl

π
80−8ex

)2

+
(

2πk′ − ϕr

π
80+8ex

)2
]
− i0h̄

2e
(cosϕl + cosϕr)

8TQ =
[
(k − k′)−

(
ϕl − ϕr

2π

)]
80.

(85)

We can now identifyϕl, ϕr andk− k′ respectively withλl, λr andn to obtain the traditional
equations characterizing a dc SQUID. Finally, by writingϕl andϕr as

ϕl = ϕ0−
π8TQ

80
ϕr = ϕ0+

π8TQ

80
(86)
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we obtain

j t
Q
= 2i0 sinϕ0 cos

(
π8TQ

80

)
j c
Q
= − i0 sin

π8TQ

80
cosϕ0. (87)

In equilibrium, the input currentI will be equal to the output (through) current eigenvalues
j t
Q

. The maximum currentIc that can be passed through the ring as a supercurrent
corresponds toϕ0 = π/2:

Ic = 2i0

∣∣∣∣cos

(
π8TQ

80

)∣∣∣∣ . (88)

When the value of the through current is at its maximum valueIc, the circulating current
j c
Q

is zero so the enclosed flux will be equal to the applied flux. The critical currentIc can
thus be expressed as a function of the externally applied flux8ex, as previously:

Ic(8ex) = 2i0

∣∣∣∣cos

(
π8ex

80

)∣∣∣∣ . (89)

3.2. Superselection rules

For a given external environment (I , 8ex), the state of the system, the operatorsP̂ l
ϕl

and

P̂ r
ϕr

and their specific eigenvalues are all fully determined. We have a one-state quantum
system and there is no possibility of the system existing in a state which is a superposition
of different9I,8ex. We can formalise this situation in terms of SSRs.

For any particular value of8ex ∈ (−80/2,80/2), the applied supercurrentI is limited
by the critical currentIc(8ex) (equation (89)) to lie within the rangeI ∈ (0, Ic(8ex)). Let
H(I,8ex) be the one-dimensional subspace spanned by the eigenfunction9I,8ex. We can
construct a double direct integral ofH(I,8ex) with respect to the measure dI d8ex [22]:

H⊕ =
∫ ⊕

d8ex

∫ ⊕
H(I,8ex) dI (90)

where the integrals hereafter are over the ranges8ex ∈ (−80/2,80/2) andI ∈ (0, Ic(8ex)).
For any given external environment (I , 8ex), the choice of operatorŝP l

ϕl
, P̂ r

ϕr
, P̂ t

ϕl ,ϕr
,

P̂ c
ϕl ,ϕr

, Ĵ t
ϕl ,ϕr

, Ĵ c
ϕl ,ϕr

, Ĥϕl ,ϕr and 8̂Tϕl ,ϕr
is fixed, as are their eigenvalues. Let the operators

P̂ l(I,8ex), P̂ r(I,8ex), P̂ t(I,8ex), P̂ c(I,8ex), Ĵ t(I,8ex), Ĵ c(I,8ex), Ĥ (I,8ex) and
8̂T (I,8ex) be their respective reductions to the subspaceH(I,8ex). Then we may construct
direct integral operators acting onH⊕ as follows

P̂⊕l =
∫ ⊕

d8ex

∫ ⊕
P̂ l(I,8ex) dI 8̂⊕T =

∫ ⊕
d8ex

∫ ⊕
8̂T (I,8ex) dI (91)

and likewiseP̂⊕r , P̂⊕t , P̂⊕c , Ĵ⊕t , Ĵ⊕c andĤ⊕.
We can now formalise the system in terms of the following postulate.

Postulate 5.A TSCR containing two JJs in a dc SQUID configuration with8ex ∈
(−80/2,80/2) possesses continuous SSR so that its associated Hilbert space is the direct
integral spaceH⊕ with all its observables represented by decomposable (i.e. direct integral)
self-adjoint operators in this space.

Postulate 6.The canonical momenta on the left- and right-hand sides of the dc SQUID
are quantized as the operatorsP̂⊕l and P̂⊕r respectively, and the Hamiltonian aŝH⊕. The
through momentum, through current, circulating momentum and circulating current are
represented respectively by the operatorsP̂⊕t , Ĵ⊕t , P̂⊕c and Ĵ⊕c , and the enclosed flux by
the operator8̂⊕T .



4750 F E Harrison and K K Wan

Our model possesses the following properties.
(1) Pure states, in the sense of normalized Dirac delta functions in the direct integral

spaceH⊕ [23], correspond one-to-one to the one-dimensional subspacesH(I,8ex); that is,
to eigenfunctions9I,8ex(θ). Linear combinations represent mixed states.

(2) A quantum system comprises the quantum object plus its static environment and
usually has a number of states available to it [9, p 5]. But here we have a one-state system
for each external environment (I , 8ex).

(3) The standard equations characterizing the behaviour of the device are obeyed.
(a) The Josephson equation for the through supercurrent:
(i) in operator formĴ⊕t = 2i0 sinλ0 cos(π8̂⊕T /80);
(ii) in eigenvalue formj t

Q
= 2i0 sinλ0 cos(π8TQ/80).

(b) The critical current equation:Ic(8ex) = 2i0| cos( π8ex
80
)|.

(c) The flux-current relation:
(i) in operator form8̂⊕T =

∫ ⊕ d8ex
∫ ⊕ dI [8exÎ(I,8ex)] +LĴ⊕c , whereÎ(I,8ex) is the

identity operator onH(I,8ex);
(ii) in eigenvalue form8TQ = 8ex+ Lj c

Q
.

(d) The ‘flux quantization’ condition:8TQ = −(ϕl − ϕr)80/2π.
The maximum supercurrentIc that can be passed through a dc SQUID is a80-periodic

function of the external applied magnetic flux. Although this outcome is similar to the
Aharonov–Bohm effect [24], the production of the interference pattern is not the same
in the two cases. The Aharonov–Bohm effect, like most quantum (or, indeed, classical
wave) interference patterns, is a result of phase differences between the two superposed
wavefunctions, whereas in the dc SQUID, the interference effect is a result of the system
having to satisfy so many constraints. In both cases, the extra phases picked up by the
left- and right-hand wavefunctions are determined by the enclosed magnetic flux. In the
Aharonov–Bohm effect, the enclosed flux is an independent external parameter, unaffected
by the passing charged particles whose phases it affects, whereas in the dc SQUID, the
enclosed flux is a function of the phase differences across both junctions. For the dc SQUID,
the interference effect is not due to the left- and right-hand condensate wavefunctions being
out of phase at their meeting point: they are not. It arises because the phases in the left-
and right-hand paths are coupled by the JJs in each path, through the enclosed flux being a
function of both. The interference effect is thus not the standard type of interference seen
in quantum mechanical systems. The maximum through supercurrentIc(8ex) marks the
destruction of the superconducting state. Once exceeded, the system is driven normal and
can then be described wholly in classical terms.Ic(8ex) thus defines the transition from
the quantum to the classical realm. It is this boundary between the quantum and classical
domains which exhibits the interference pattern.

4. Superselection rules and the quantum/classical divide

As we noted in the introduction, SSRs introduce classical properties into quantum systems
and are thus closely linked to the distinction between quantum and classical systems. A
commonly accepted definition of a classical system is that a system is called a classical
system if all its observables commute [12]. According to this definition, our models of TSCR
devices are classical systems. Yet physicists rightly recognize these devices as quantum
systems: they are explicable only in quantum mechanical terms, despite their macroscopic
size. In accepting these models as well as the quantum nature of superconducting rings,
we are forced to give up the above definition and are left in the uncomfortable position of
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having no general kinematic criterion for ascertaining whether or not a given theoretical
model refers to a quantum or a classical system. One possible solution to this dilemma
is to seek a criterion in the dynamics of the system. In classical mechanics the evolution
between disjoint states is given by classical canonical transformations [38, 39] which, unlike
unitary evolutions between supersectors, do not forbid the Hamiltonian, which generates the
canonical transformations, being an observable of the system.

It is useful here to make a distinction betweenpure quantum systems, which are those
having no SSRs, so that there is a one-to-one correspondence between pure states and
unit vectors, andmixed quantum systems, which possess a SSRs so that not all unit vectors
represent pure states. Using this terminology, our models of TSCR systems, with an assumed
unitary time evolution, are mixed quantum systems, rather than classical systems.

5. Use of mixed quantum systems as measuring devices

The use of a mixed quantum system such as a dc SQUID to measure a classical observable
such as magnetic flux reverses the usual quantum measurement scenario in which a
seemingly classical measuring device is used to measure a quantum observable, and might
seem paradoxical. The crucial properties of a measuring device are, however, (1) that
it has non-superposable macroscopically distinguishable states; and (2) that these may be
unambiguously correlated with different states of the object being measured. The first of
these properties means that a measuring device must possess a SSR, whatever type of system
it is measuring: all measuring devices must be either mixed quantum systems or classical
systems. The second requirement places a further constraint on measuring apparatus for
quantum systems. This is because the measuring apparatus has to couple to the quantum
system. The composite system comprising the measuring apparatus and quantum system
is a mixed quantum system, so the coupling interaction should be described by a unitary
time evolution. This means that the measuring apparatus itself must be a mixed quantum
system, not a classical system.

In classical measurement theory, the correlation of object and apparatus states may
be achieved with negligible effect on the state of the object. In principle, then, classical
systems may be measured using apparatus that are either mixed quantum systems or purely
classical ones. To measure a continuous classical observable to any arbitrary degree of
accuracy, the measuring apparatus must have a continuous SSR, so that different states of
the classical object may be put into one-to-one correspondence with different supersectors of
the apparatus. Measuring apparatus for continuous classical observables may thus be either
classical systems or mixed quantum systems possessing a continuous SSR. A dc SQUID is
an example of the latter, with its pure states in one-to-one correspondence (over a one flux
quantum range) with the classical external magnetic flux.

6. Incoherence and fluctuations in the environment

Thus far, we have assumed an ideal external current source. In practice, any current source
will have fluctuations and uncertainty in the current produced. Suppose that a given non-
ideal current source produces an output current with a distribution given by a Gaussian
probability density functionw(I):

w(I) = 1√
2πσ

e−(I−Im)
2/2σ 2

. (92)
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That is, we have a current source generating an incoherent Gaussian output with a mean
valueIm and an uncertaintyσ . Likewise, the external magnetic flux arising from the applied
magnetic field will have incoherent fluctuations. Clearly, if these are of the order of a flux
quantum80 any interference effects will be washed out. Let us suppose that the external
flux 8ex also has a Gaussian distribution given by a probability density functionw̄(8ex).
We have already established that an ideal current source feeding a precise current, sayI0,
into the SQUID, together with an ideal magnetic field source giving rise to a precise flux,
say8ex0, corresponds to a pure state9I0,8ex0

in the supersectorH(I0,8ex0). It follows that
an incoherent current and magnetic flux correspond to a mixed state. Our model, in which
various physical quantities are expressed explicitly in terms of direct integrals, is eminently
suited to accommodate such a situation.

We can unify the description of pure and mixed states in terms of the statistical operators
introduced in the appendix. The Hilbert space for the dc SQUID system is the direct
integral of a two-parameter family of one-dimensional supersectorsH(I,8ex). The pure
state9I0,8ex0

is equivalent to the statistical operatorŜ⊕p onH⊕:

Ŝ⊕p =
∫ ⊕

d8ex

∫
Ŝp(I,8ex)dI (93)

where

Ŝp(I,8ex) = δ(8ex−8ex0)δ(I − I0)D̂(I,8ex) D̂(I,8ex) = |9I,8ex〉〈9I,8ex|. (94)

For incoherent currents and external fluxes, the mixed state of the system can be described
by the statistical operator̂S⊕m :

Ŝ⊕m =
∫ ⊕

d8ex

∫
Ŝm(I,8ex) dI whereŜm(I,8ex) = w̄(8ex)w(I)D̂(I,8ex). (95)

Expectation values of observablesÂ⊕ are given by tr(Ŝ⊕mÂ
⊕). For example, the expectation

value for the through current̂J⊕t is given by

tr(Ŝ⊕m Ĵ
⊕
t ) =

∫
d8ex

∫
tr(Ŝm(I,8ex)Ĵ

t(I,8ex)) dI

=
∫

d8exw̄(8ex)

∫
w(I) tr(D̂(I,8ex)Ĵ

t(I,8ex)) dI

=
∫
w(I)〈9I,8ex|Ĵ t(I,8ex)9I,8ex〉 dI = Im. (96)

In this manner we can incorporate the properties of both pure and mixed quantum
systems into a unified model. The pure quantum part of the system is represented by pure
statesŜ⊕p , while the classical part corresponds to mixed statesŜ⊕m .

7. Conclusions

Using the method of quantization by parts we have constructed exactly solvable models of
two specific physical systems (namely a current-fed TSCR and a dc SQUID). This method
has recently been used to develop a systematic treatment of branching quantum circuits
[37, 40], showing how input and output leads could be incorporated into our present model
to produce a complete model of the dc SQUID. All these systems have been modelled
as quantum systems possessing continuous SSRs. The fact that they are explicable only
by recourse to quantum mechanics, despite conforming to a widely used definition of a
classical system, has led us to suggest that a re-examination of that definition should be
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undertaken. These models highlight the differences between standard quantum interference
and the type of interference seen in SQUIDs. Consideration of the use of dc SQUIDs as
measuring devices for classical fields has helped to identify the different attributes required
of measuring apparatus in the quantum and classical domains.
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Appendix: Continuous superselection rules, mixed states and statistical operators

In standard quantum mechanics, the quantum state of a system associated with a Hillbert
spaceH may be represented by a density operatorD̂ on H. In general, such a density
operator represents a mixed state. A pure state, which can be described by a unit vector
φ0 ∈ H, corresponds to a density operatorD̂0 = |φ0〉〈φ0| which is a projection operator on
H. Expectation values of observablesÂ are given by tr(̂AD̂), which is equal to〈φ0|Âφ0〉
whenD̂ = D̂0.

For a system associated with a Hilbert space with a continuous SSR the situation is
technically quite different. The existence of a continuous SSR means, in the simple case
where the SSR is parametrized by a single real parameterα, that:

(1) there exists a family of Hilbert spacesH(α) parametrized byα such that the Hilbert
space for the system is given by the direct integral space

H⊕ =
∫ ⊕
H(α) dα. (97)

A unit vectorφ⊕ in the direct integral spaceH⊕ is of the form

φ⊕ =
∫ ⊕

c(α)φ(α) dα (98)

where φ(α) are unit vectors inH(α) and c(α) is a complex function ofα such that∫ |c(α)|2 dα = 1.
(2) Physical observables for the system correspond to self-adjoint operators inH⊕ of

the form

Â⊕ =
∫ ⊕

Â(α) dα (99)

where Â(α) are self-adjoint operators inH(α). Operators of this type are called
decomposable self-adjoint operators inH⊕ [22, 23].

(3) A unit vectorφ⊕ generally represents a mixture of statesφ(α) ∈ H(α), because of
the decomposable nature of the operators representing observables. The expectation value
of Â⊕ is

〈φ⊕|Â⊕φ⊕〉 =
∫
|c(α)|2〈φ(α)|Â(α)φ(α)〉 dα (100)

where 〈φ(α)|Â(α)φ(α)〉 is the expectation value of̂A(α) with respect toφ(α) in the
supersectorH(α). Note that this mixture is quite distinct from the mixed state described
by a density operator̂D in the Hilbert spaceH in standard quantum mechanics. The above
mixture is open to the ignorance interpretation and represents a classical property.
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We can generalize the description of mixed states by introducing statistical operators
Ŝ⊕, defined on the direct integral spaceH⊕ by

Ŝ⊕ =
∫ ⊕

Ŝ(α) dα =
∫ ⊕

w(α)D̂(α) dα Ŝ(α) = w(α)D̂(α) (101)

whereD̂(α) is a density operator onH(α) andw(α) is a real-valued probability density
function (i.e. 06 w(α) 6 1 and

∫
w(α) dα = 1).

In the case where all supersectorsH(α) are one dimensional,̂D(α) = |φ(α)〉〈φ(α)| and
we can see that̂S⊕ corresponds to a mixture of statesφ(α) with the distribution of states in
the mixture given by the probability density functionw(α). In other words, this statistical
operator can be generated by any unit vectorφ⊕ for which |c(α)|2 = w(α). Consequently,
a statistical operator does not correspond to a unique vector inH⊕ [1, 4]. We can represent
a pure stateφ(α0) ∈ H(α0) in terms of a statistical operator with aδ-function distribution
w(α) = δ(α − α0):

Ŝ⊕p =
∫ ⊕

Ŝp(α) dα =
∫ ⊕

δ(α − α0)D̂(α) dα = |φ(α0)〉〈φ(α0)|. (102)

Expectation values of observables are given by

tr(Ŝ⊕Â⊕) =
∫

tr(Â(α)Ŝ(α)) dα (103)

where the trace tr(Â(α)Ŝ(α)) is evaluated in the supersectorH(α). We should point out that
a statistical operator̂S⊕ as defined above is generally not a density operator onH⊕, and the
converse is also true (for example, a density operator need not be decomposable). This is in
distinction to some other definitions of statistical operators [41]. All these definitions can be
extended to the case where the supersectors are specified by two or more real parameters.

References

[1] Van Fraassen B C 1991Quantum Mechanics(Oxford: Clarendon)
[2] Leggett A J 1986 Quantum mechanics at the macroscopic levelThe Lesson of Quantum Theoryed J de Boer,

E Dal and O Ulfbeck (Amsterdam: Elsevier)
[3] Wan K K 1980Can. J. Phys.58 976
[4] Beltrametti E and Cassinelli G 1981The Logic of Quantum Mechanics(Reading, MA: Addison-Wesley)
[5] Busch P, Lahti P J and Mittelstaedt P 1991The Quantum Theory of Measurement(Heidelberg: Springer)
[6] Pfeifer P 1980Chiral Molecules—A Superselection Rule Induced by the Radiation Field(Zürich: ETH)
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